Air Toxic Risk Assessment Modeling Tools Symposium: Site Specific Assessments including Residual Risk (Perchloroethylene Dry Cleaning)

July 15-17, 2003

Ted Palma, Amy Vasu, Asia Yeary U.S. EPA / OAQPS

Residual Risk Reviews

- The CAA also requires that a residual risk rule be promulgated, if necessary, nine years after the promulgation of the MACT.
- For PCE Dry Cleaning this deadline was September 22, 2002.
- EPA is in the process of conducting the assessment for PCE dry cleaning source category

Industry Background

- More than 25,000 PCE dry cleaners exist (1991)
- Majority of PCE dry cleaners emit <10 tons/yr of PCE
- Approximately 25 that were subject to MACT have been identified
 - Of these, approximately 14 are currently operating at major source levels
- Many are in close proximity to residences and/or schools

The Residual Risk Test

Is conducted at project startup

 Start with a "risk test" to screen out source category, sources, pollutants as "low-risk"

Not used to require a residual risk rule

Residual Risk Test Approach

- It was conducted for a single dry cleaning facility in Anderson, Indiana -chosen for it's high annual consumptions/emissions of PCE and it's proximity to residential areas.
- Looked at a single HAP (PCE)
- It focused on human health estimating the emissions' potential to create cancer and non-cancer risks.
- Performed site-specific risk assessment

Data Sources

- Site-specific emissions, source characteristics, and facility layout data came primarily from the facility's own records.
- Latitude and longitude of the facility structure, the property lines, and the emission sources were confirmed with GPS readings during site visit.
- Data on location of nearby residences collected during site visit

Anderson Facility Background

- 3 PCE dry-to-dry machines
 - Annual PCE usage: 12,164 gallons
 - Range of PCE usage for identified major sources:
 2,100 12,600 gallons
- Two primary emission points
 - PCE machine emission stack (VIC Stack)
 - Carbon absorbers as control devices; no refrigerated condensers associated with carbon absorber
 - Room exhaust fan near PCE machines
- Facility has residences located as close as 52 feet from facility!!

The Facility

Photos of process

The Facility

Photos of facility layout

Selected the Industrial Source Complex Short-Term Model

Facility proximity to residential areas

Associated buildings and emission sources are relatively complex

Can simulate emissions from point and area sources

The Emission Points

PCE emissions were modeled by the ISCST3 model from two emissions points

- 1. A stack that exhausts from the carbon absorber (VIC Stack)
- 2. A 4'x4' room exhaust fan located along the side wall of the building, near the PCE dry cleaning machines

Note: Since the room exhaust fan has a flow rate >15m^3/s, other potential emissions through open windows or doors will be minimal.

Characterizing the Emission Points for Dispersion Modeling

- The VIC stack
 - Modeled as a point source 2 feet above the roofline
- The room exhaust vent discharged horizontally at a relatively high exit velocity approximately 3 ft. above the ground along the SW sidewall of the building
 - The source was modeled as a 16'x8' area source, located 3 ft. above ground

VIC Stack Inputs to ISCST3 Model

Model Representation: Point

Height: 7.92 m

Diameter: .457 m

Gas exit velocity: 10.1 m/s

Gas temperature: 305 K

Gas flow rate: 1.65 m³/s

• PCE emissions: 0.47 g/s

Room Exhaust Inputs to ISCST3 Model

Model Representation: Area

Area source size: 4.9m x 2.4m

Area source elevation: 0.90 m

• Flow rate: 15.56m^3/s

PCE emissions: 1.44 g/s

Meteorology Data

- Compiled from a five year data set (1987-1991)
 - Surface data from Indianapolis NWS (35 mi. SW of the facility)
 - Upper air data from Dayton, OH NWS (80 mi. SE of the facility)

Modeling Receptors

- Fenceline Receptors 20 receptors were placed along the facility property line at a spacing of 25 meters
- Polar grid 16 distances (50 to 1000 meters)
- No terrain elevation was considered because the surrounding terrain was relatively flat
- Residences adjacent to the east end of the property were characterized using the nearest polar grid receptor

Receptor Locations

ISCST3 model options employed in this study:

Calculations: Annual Average

Source Type: Point, Area

Receptor Orientation: Polar, Discrete

Terrain: Flat

Dispersion Coefficient: Rural

Regulatory Default: Yes

Building Effect Downwash Yes

Meteorology: Surface Data – Indianapolis, IN

Upper Air Data – Dayton, OH

Dispersion Modeling Results

 A PCE concentration of 230 ug/m³ at a nearby residence

 PCE concentrations of 30 ug/m³ or greater at location of homes as far away as 300m

 Exhaust vent is the source of more than 90% of the risk

ISCST Model Results

Model Year	PCE Conc. At Residence
	<u>(μg/m³)</u>
– 1987	257
– 1988	223
– 1989	226
– 1990	242
– 1991	<u>218</u>
-5-yr Avg:	233

Annual (1987) PCE Concentrations (μ g/m³)

Risk Assessment Results: Cancer

- Used a unit risk estimate (URE) range for PCE of 7.2x10⁻⁸ to 5.9x10⁻⁶ per ug/m3
 - Encompasses range proposed in EPA IRIS document and California EPA's current URE
 - EPA URE range is undergoing external review
- A 230ug/m³ lifetime exposure level yields a risk range of 17 in a million to 1400 in a million

Risk Assessment Results: Non-Cancer

- Used a reference concentration (RfC) range for PCE of 35ug/m³ to 270ug/m³
 - Range is the California EPA reference exposure level (REL) (35ug/ m³) to the ATSDR minimum risk level (MRL) for PCE (270ug/ m³)
- At modeled PCE concentration of 230 ug/m³, the hazard quotient (HQ) ranges from 0.8 to 7

The Big Picture

- The EPA conducted a residual risk test for the PCE dry cleaning source category.
- Cancer risks in the vicinity of one large PCE dry cleaner are significantly higher than 1 in a million.
- At this time, the EPA lacks sufficient data to remove PCE dry cleaning from consideration of a residual risk rule.

Next Steps

- Options for reducing risks at area source PCE dry cleaners will also be considered.
- EPA is in the data gathering stage of this regulatory development.
- Regulatory alternatives (risk reduction/control options) have not yet been determined.
- EPA is working with state/local agencies and communities on an ambient monitoring program to evaluate modeling.